The Nucleus of the Solitary Tract→Nucleus Paragigantocellularis→Locus Coeruleus→CA1 region of dorsal hippocampus pathway is important for consolidation of object recognition memory
نویسندگان
چکیده
The Nucleus of the Solitary Tract (NTS) receives gustatory and visceral information from afferent fibers in the vagus and projects to the Nucleus Paragigantocellularis (PGi), among several other brain region. PGi sends excitatory fibers, mostly glutamatergic, to the Locus Coeruleus (LC). In turn, LC sends noradrenergic projections to many areas of the brain, including hippocampus (HIPP) and amygdala. Here we show that the NTS-PGi-LC-HIPP pathway is required for the memory consolidation of object recognition (OR). The inhibition of NTS, PGi or LC by microinfusion of the GABA(A) receptor agonist, muscimol, into each of these structures up to 3h after object recognition memory training impairs its consolidation as assessed in a retention test 24h later. The posttraining microinfusion of the β-blocker, timolol into CA1 mimics this effect. Intra-CA1 NA microinfusion does not alter retention per se, but reverses the disruptive effect of muscimol given into NTS, PGi or LC. This effect of NA is shared by a microinfusion of NMDA into LC. These results support the idea that the NTS-PGi-LC-CA1 pathway contributes to memory consolidation through a β-noradrenergic mechanism in CA1.
منابع مشابه
Hippocampal noradrenergic activation is necessary for object recognition memory consolidation and can promote BDNF increase and memory persistence
Previously we showed that activation of the Nucleus of the Solitary Tract (NTS)-Nucleus Paragigantocellularis (PGi)-Locus coeruleus (LC) pathway, which theoretically culminates with norepinephrine (NE) release in dorsal hippocampus (CA1 region) and basolateral amygdala (BLA) is necessary for the consolidation of object recognition (OR) memory. Here we show that, while the microinjection of the ...
متن کاملThe effect of morphine on some electrophysiological parameters of paragigantocellularis and locus coeruleus nuclei interconnections
As one of the most important diffused brain modulatory systems, the nucleus locus coeruleus (LC) receives most of its afferents from the nucleus paragigantocellularis (PGi) and plays a major role in the control of drug dependence and some emotional and exciting states. For detailed investigation of the effect of morphine on relationship between these two brain stem nuclei, the activity of the r...
متن کاملThe effect of morphine on some electrophysiological parameters of paragigantocellularis and locus coeruleus nuclei interconnections
As one of the most important diffused brain modulatory systems, the nucleus locus coeruleus (LC) receives most of its afferents from the nucleus paragigantocellularis (PGi) and plays a major role in the control of drug dependence and some emotional and exciting states. For detailed investigation of the effect of morphine on relationship between these two brain stem nuclei, the activity of the r...
متن کاملSepto-Hippocampo-Septal Loop and Memory Formation
The Cholinergic and GABAergic .bers of the medial septal/diagonal band of Broca (MS/DB) area project to the hippocampus and constitute the septo-hippocampal pathway, which has been proven to play a role in learning and memory. In addition, the hippocampus has bidirectional connections with the septum so that to self-regulate of cholinergic input. The activity of septal and hippocampal neuron...
متن کاملThe role of left and right Locus Coeruleus in formalin test in rats
Introduction: Pain as a complex process in the CNS has been extensively studied by many researchers. It has been found that pain is controlled by certain pathways in the CNS, one of most important of which is the descending noradrenergic system. The pathway begins with Locus Coeruleus (LC) nucleus and ends in the spinal cord. In this study, formalin test was used as a chemical and tonic pain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurobiology of Learning and Memory
دوره 100 شماره
صفحات -
تاریخ انتشار 2013